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1 Introduction

In recent years great effort has been devoted towards the study and classification of su-

persymmetric solutions of supergravity theories. In particular, in five dimensions, it has

been possible to find a complete classification of supersymmetric solutions with various

fractions of supersymmetry [1]. The research in this domain is motivated by the fact

that supersymmetric gravitational solutions play an important role in our understand-

ing of the microscopic origin of entropy, stringy duality symmetries and the conjectured

AdS/CFT correspondence. Though much is known about the structure of solutions pre-

serving fractions of supersymmetry, the same can not be said about solutions breaking all

of the supersymmetries. In this paper we are mainly interested in finding non-rotating non-

supersymmetric black hole and string solutions in five dimensional supergravity coupled

to abelian vector multiplets. Non supersymmetric solutions for these theories were first

considered in [2] where an explicit solution was found for the so-called STU model with

three independent electric charges. Our present work can be considered as an elaboration

and an extension of the results found in [2]. We will find non-supersymmetric electrically

charged black holes for the gauged and ungauged theories. We will also find magnetically

charged string solutions in the ungauged theories.

We organize our paper as follows. Section 2 contains a summary of the basic notions of

N = 2, D = 5 supergravity and very special geometry which will be used in our subsequent

analysis. In section 3 non-supersymmetric solutions are derived for all models of gauged

and ungauged N = 2, D = 5 supergravity models, both the scalars and the gauge fields

are expressed in terms of harmonic functions and the equations of motion are reduced to

one constraint on these harmonic functions. Section 4 contains a similar analysis for the

non-supersymmetric black string solutions of the ungauged theories. Section 5 contains a

discussion on models with symmetric scalar manifolds where the constraints simplify and
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an explicit analysis is given for solutions where the prepotential factorizes into a linear and

a quadratic term. The known solutions of the so called STU model are discussed within

our analysis. Section 6 summarizes our results.

2 N = 2 supergravity theory

Here we review some of the basics of the theories of five dimensional N = 2 supergravity

coupled to abelian vectormultiplets. Such theories were first constructed in [3] to which the

reader can be referred for detailed discussion. The bosonic action of the theory in terms

of the so-called very special geometry was later given in [4]. A large class of the N = 2,

D = 5 models are obtained from the compactification of eleven dimensional supergravity,

the low energy limit of M-theory, on a Calabi-Yau threefold [5]. The bosonic action of the

N = 2 ungauged supergravity coupled to abelian vector multiplets can be written as

S =
1

16πG

∫ (

R ⋆ 1 − GIJ

(

F I ∧ ∗F J + dXI ∧ ⋆dXJ
)

−
1

6
CIJKF I ∧ F J ∧ AK

)

(2.1)

where F I = dAI , where AI are the 1-forms representing the n Abelian gauge fields. In

our analysis our metric has signature (−,+,+,+,+) . The scalars XI are constrained by

the condition

V(X) =
1

6
CIJKXIXJXK = XIX

I = 1 (2.2)

and thus can be regarded as being functions of n−1 unconstrained scalars φi. The coupling

GIJ depends on the scalars via

GIJ =
9

2
XIXJ −

1

2
CIJKXK . (2.3)

Contracting GIJ with XJand ∂iX
J , we arrive at the following useful equations

GIJXJ =
3

2
XI , GIJ∂iX

J = −
3

2
∂iXI , (2.4)

where ∂i = ∂
∂φi . The bosonic part of the action of the corresponding U(1)-gauged super-

gravity is given by (2.1) with an additional potential term χ2U ,where the scalar potential

U can be written as

U = 9VIVJ

(

XIXJ −
1

2
GIJ

)

(2.5)

where VI are constants. The scalar equations in the U(1)-gauged theory can be written as

−∇α∇αXI +

(

1

6
CMNI −

1

2
XICMNJXJ

)

∇αXM∇αXN

−
1

2

(

XMXP CNPI −
1

6
CMNI − 6XIXMXN +

1

6
XICMNJXJ

)

FM
β1β2

FNβ1β2

−3χ2VMVN

(

1

2
GMLGNP CLPI + XI

(

GMN − 2XMXN
)

)

= 0. (2.6)
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The Einstein equations are

Rµν = GIJ

(

F I
µλF J

ν
λ + ∇µXI∇νX

J −
1

6
gµνF I

ρσF Jρσ

)

−
2

3
χ2gµνU (2.7)

and the Maxwell gauge equations are given by

d
(

GIJ ⋆ F J
)

= −
1

4
CIJKF J ∧ FK . (2.8)

3 Non-supersymmetric black holes

In this section we construct a class of non-supersymmetric black holes in both the gauged

and the ungauged supergravity theories, we consider the gauged theory first. We take the

following ansatz for the metric:

ds2 = −e−4Afdt2 + e2A

(

dr2

f
+ r2dΩ2

3,k

)

(3.1)

where A = A(r), f = f(r) and

dΩ2
3,k =















dξ2 + sin2 ξ(dθ2 + sin2 θdφ2) k = 1

dξ2 + ξ2(dθ2 + sin2 θdφ2) k = 0

dξ2 + sinh2 ξ(dθ2 + sin2 θdφ2) k = −1

(3.2)

corresponds to the metric on S3, R3 or H3 according as k = 1, k = 0 or k = −1.

The non-vanishing Ricci tensor components are given by

Rtt = −
f

2r
e−6A

(

4A′′rf + 4f ′A′r − rf ′′ + 12A′f − 3f ′
)

,

Rrr = −

(

A′′ + 6A′2 + 3
A′

r

)

−
1

2rf

(

−4f ′A′r + rf ′′ + 3f ′
)

,

Rξξ = −f
(

3A′r + A′′r2 + 2
)

− f ′
(

A′r2 + r
)

+ 2k (3.3)

and

Rθθ =















sin2 ξ Rξξ k = 1

ξ2 Rξξ k = 0

sinh2 ξ Rξξ k = −1

(3.4)

Rφφ =















sin2 ξ sin2 θ Rξξ k = 1

ξ2 sin2 θ Rξξ k = 0

sinh2 ξ sin2 θ Rξξ k = −1 .

(3.5)

The prime denotes differentiation with respect to the radial coordinate r.
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To proceed, we assume that the only non-vanishing component of the gauge field

strengths is F I
tr = F I

tr(r), and that the scalars XI depend only on r. We take the

following as an ansatz for the gauge fields

F I
rt =

1

2
e−4AGIJ∂rH̃J , for k = 0, 1,

F I
rt =

i

2
e−4AGIJ∂rH̃J , for k = − 1, (3.6)

where H̃I constitute a set of harmonic functions H̃I = h̃I + q̃I

r2 . It should be noted that in

the case k = −1, we have complexified the gauge field strengths. Such solutions, strictly

speaking, are not non-extremal solutions of the standard N = 2 supergravity. Rather, they

are solutions of a modified theory, with a sign change in the Maxwell term in the action.

Both the gauge field equations and the Bianchi identities hold without further constraint.

Next consider the Einstein equations; these are equivalent to

f ′′ +
7

r
f ′ +

8

r2
f −

8k

r2
= −36χ2e2AVIVJ

(

1

2
GIJ − XIXJ

)

(3.7)

and

GIJF I
rtF

J
rt = e−4U

(

−3f ′A′ − 3fA′′ +
f ′′

2
−

9fA′

r
+

f ′

2r
+

2(k − f)

r2

)

(3.8)

and

GIJ∂rX
I∂rX

J = −

(

3A′′ +
9

r
A′ + 6A′2

)

. (3.9)

To satisfy these constraints, we adopt the same ansatz for the scalars as for the un-

gauged supersymmetric black hole solutions [6]:

XI =
1

3
e−2AHI(r) (3.10)

where HI(r) are harmonic functions. This constraint is sufficient to ensure that (3.9)

is satisfied.

We set

HI = δVI +
qI

r2
(3.11)

where δ is a non-zero constant. Then (3.7) can be rewritten as

f ′′ +
7

r
f ′ +

8

r2
f −

8k

r2
=

9χ2

δ2

(

(

r2e6A
)′′

+
7

r

(

r2e6A
)′

+ 8e6A

)

. (3.12)

This equation has

f = k −
µ

r2
+

9χ2

δ2
r2e6A (3.13)

as a solution. The remaining condition (3.8) from the Einstein equations is then equiva-

lent to

GIJSIJ = 0 (3.14)
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where

SIJ = (q̃I q̃J − kqIqJ) −
1

2
µδ(qIVJ + qJVI), for k = 0, 1,

SIJ = − (q̃I q̃J − qIqJ) −
1

2
µδ(qIVJ + qJVI), for k = −1 . (3.15)

Lastly, we consider the scalar equation (2.6). It is straightforward but tedious to show that

constraint (3.14) and the scalar equations are equivalent to the constraint

CMNIG
MLGNT SLT + 8XMSMI − 12XIX

MXNSMN = 0. (3.16)

We note that if we contract (3.16) with XI , then equation (3.14) is obtained

For supersymmetric black holes with event horizon topology S3, we take µ = 0, k = 1

and HI = H̃I , and (3.16) is satisfied with SIJ = 0. However, for the deformed solutions

with µ 6= 0, if SIJ = 0 for all I, J then it is straightforward to show that there must exist

constants α, β such that

q̃I = αqI + βVI (3.17)

and furthermore qI and VI must be linearly dependent. In order to find solutions for which

the charges are not so strongly constrained, instead of solving SIJ = 0 for all I, J , one

must solve the weaker condition given by (3.16).

Finally, the non-supersymmetric black hole solutions of the ungauged theory are ob-

tained by setting χ = 0 and k = 1 throughout the gauged solution. One minor subtlety

is that for the gauged solutions, the asymptotic values of the harmonic functions HI given

in (3.11) are fixed (up to an overall scale) in terms of the constants VI which appear in

the construction of the theory. However, for the ungauged solutions, the constants VI ap-

pearing in (3.11) are arbitrary. Setting µ = 0, one recovers the supersymmetric black hole

solutions presented in [6, 7].

4 Non-supersymmetric magnetic strings

In this section we construct non-supersymmetric black string solutions of the ungauged

theory. The metric is given by

ds2 = e−2B
(

−fdt2 + dz2
)

+ e4B

(

1

f
dr2 + r2dθ2 + r2 sin2 θdφ2

)

(4.1)

where B = B(r), f = f(r). The non-vanishing components of the Ricci tensor are given by

Rtt = −e−6Bf

(

f ′B′ −
f ′

r
−

f ′′

2

)

− e−6Bf2

(

B′′ +
2B′

r

)

,

Rzz = e−6Bf ′B′ + fe−6B

(

B′′ +
2B′

r

)

,

Rrr = −

(

2B′′ + 6B′2 −
f ′B′

f
+

f ′′

2f
+

4B′

r
+

f ′

rf

)

,

Rθθ = −f
(

4B′r + 2B′′r2 + 1
)

− rf ′
(

2B′r + 1
)

+ 1,

Rφφ = Rθθ sin2 θ . (4.2)

– 5 –



J
H
E
P
0
5
(
2
0
0
9
)
0
9
2

We also assume that the scalars XI depend only on r, and that the only non-zero compo-

nents of the gauge field strengths are given by

F I
θφ = αI sin θ (4.3)

for constant αI . With these choices, the gauge field equations and Bianchi identities hold

without further constraint. The Einstein equations (taking χ = 0) then fix

f = 1 −
µ

r
(4.4)

together with the constraints

e−4B

r4
GIJαIαJ = −3

(

f ′B′ + fB′′ +
2B′f

r

)

, (4.5)

GIJ∂rX
J∂rX

I = −3

(

B′′ + 2B′2 +
2B′

r

)

. (4.6)

To satisfy the constraint (4.6) we set

XI = e−2BHI (4.7)

where

HI = hI +
qI

r
(4.8)

are harmonic functions. Then (4.5) can be rewritten as

GIJU IJ = 0 (4.9)

where

U IJ = αIαJ − qIqJ −
1

2
µ
(

hIqJ + hJqI
)

. (4.10)

Finally, consider the scalar equations (2.6) (with χ = 0). It is straightforward to show that

the scalar equations, together with ( 4.9) are equivalent to

(

XMXP CNPI −
1

6
CMNI −

9

2
XIXMXN

)

UMN = 0 . (4.11)

Again if we contract (4.11) with XI the condition (4.9) is obtained. Note that (4.11)

can be rewritten entirely in terms of the harmonic functions HI as

UMN

(

CMM1M2
CINM3

CM4M5M6
−

1

6
CMNICM1M2M3

CM4M5M6

−
3

4
CIM1M2

CMM3M4
CNM5M6

)

HM1HM2HM3HM4HM5HM6 = 0 . (4.12)

Clearly, one way to satisfy (4.12) is to set UMN = 0 for all M,N ; however just as in

the case of the black holes, this constraint is too restrictive on the charges. Finally, for

µ = 0, one obtains the supersymmetric magnetic strings constructed in [8]
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5 Explicit solutions

In this section, we shall construct solutions for the models related to Jordan algebras,

i.e., models where the scalar manifold is a symmetric space. These theories were first

constructed by Gunaydin, Sierra and Townsend [3] where it was shown that V are in one-

to-one correspondence with the norm forms of Euclidean (formally real) Jordan algebras

J of degree 3. The target spaces take the form

M =
Str0 (J)

Aut (J)
. (5.1)

Here Str0 (J) denotes the invariance group of the norm (reduced structure group) of the

Jordan algebra J and Aut (J) is its automorphism group. Non-simple Jordan algebras of

degree three are of the form R⊕Γn , where Γn is the Jordan algebra associated with a

quadratic form. The corresponding symmetric scalar manifolds are

M = SO(1, 1) ×
SO(n − 1, 1)

SO(n − 1)
. (5.2)

In this case, V(X) is factorizable into a linear times a quadratic form in (n−1) scalars,

which for the positivity of the kinetic terms in the Lagrangian, must have a Minkowski

metric. For Simple Euclidean Jordan algebras h3(A) generated by 3 × 3 Hermitian ma-

trices over the four division algebras A = R, C, H, O, the corresponding spaces M are,

respectively:

M =
SL (3, R)

SO (3)
,

SL (3, C)

SU (3)
,

SU∗ (6)

USp (6)
,

E6(−26)

F4
.

For the simple Jordan algebras [9], an element for the four families hA
3 can be written in

the form

L =







α z∗ y∗

z β x

y x∗ γ






(5.3)

where (α, β, γ) ∈ R and (x, y, z) ∈ A. The cubic norm V is given by

V = detL = αβγ −
(

α |x|2 + β |y|2 + γ |z|2
)

+ 2Re (xyz) . (5.4)

In all of these cases, the following constraints hold:

CIJK = δII′δJJ ′

δKK ′

CI′J ′K ′ ,

CIJKCJ ′(LM CPQ)K ′δJJ ′

δKK ′

=
4

3
δI(L CMPQ),

XI =
9

2
CIJKXJXK

GIJ = 2XIXJ − 6CIJKXK . (5.5)

In the case of the black hole solutions, the constraint (3.16) can then be rewritten as

(

CIMN − 6XMCIJNXJ + XIXMXN
)

SMN = 0 (5.6)

– 7 –
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or equivalently

SMN

(

1

36
CM1M2M3CM4M5M6CLMN −

1

6
CM1M2M3CNLM4CMM5M6

+
1

8
CLM1M2CMM3M4CNM5M6

)

HM1
HM2

HM3
HM4

HM5
HM6

= 0 . (5.7)

Observe that this equation is identical (up to a trivial raising and lowering of indices)

to that found for the black string solutions in (4.12). This is also expected because of

the duality symmetry discussed in [10]. Hence, it suffices to solve the equation (5.7), (or

equivalently (5.6)). These equations can be simplified slightly to give

(

1

2
CIM1M2

CM1MNCM2N1N2 − δM
I CNN1N2

)

SMNHN1
HN2

= 0 . (5.8)

In principle, the constraints on the charges can be obtained by expanding this equation

in powers of r; however these constraints are highly non-linear and in general they do not

appear tractable.

To proceed, we consider the case when the pre-potential V factorizes into a linear times

a quadratic form as

V =
1

2
X1
(

ηabX
aXb

)

, a, b = 2, . . . , n (5.9)

and ηab is a Minkowski metric on R
1,n−2.

Then we note the useful identities

ηabX
b = 9XaX1, X1 =

9

2
ηabXaXb, Xa = 9X1η

abXb

X1X1 =
1

3
, XaXa =

2

3
, ηabXb =

1

3
X1Xa. (5.10)

It is then straightforward to show that the constraints (5.6) give the two conditions

S11 = 0 , (5.11)

and

2XcηabSbc − XaηbcSbc = 0 . (5.12)

Note that the components S1a are not constrained by (5.6). The constraint S11 = 0 is

equivalent to

q̃1 =
√

µδq1V1 , for k = 0,

q̃1 =
√

q2
1 + µδq1V1 , for k = 1,

q̃1 =
√

q2
1 − µδq1V1 , for k = −1, (5.13)

and (5.12) is equivalent to

(

δVd +
qd

r2

)(

2ηcdηab − ηadηbc
)

Sbc = 0 . (5.14)

– 8 –
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This gives two equations (for k = 0, 1)

2V bq̃bq̃a − (2kV bqb + µδV bVb)qa − (q̃bq̃b − kqbqb)Va = 0

2qbq̃bq̃a − (q̃bq̃b + kqbqb)qa − µδqbqbVa = 0 (5.15)

where qa = ηabqb, V a = ηabVb, q̃a = ηabq̃b.

There are a number of cases to consider. In the first case, there exist λ, σ such that

q̃a = λqa + σVa , (5.16)

then (5.15) can be rewritten as

(

2
(

λ2 − k
)

V bqb + (2λσ − µδ) V bVb

)

qa +

(

σ2V bVb −
(

λ2 − k
)

qbqb

)

Va = 0

(

(

λ2 − k
)

qbqb − σ2V bVb

)

qa +

(

(2λσ − µδ) qbqb + 2σ2V bqb

)

Va = 0

(5.17)

There are then two sub-cases.

(i) σ2VbV
b − (λ2 − k)qbqb 6= 0. Then there exists θ such that qa = θVa for all a, where

θ 6= 0, V aVa 6= 0, θ2(λ2 − k) − σ2 6= 0

θ2(λ2 − k) + θ(2λσ − µδ) + σ2 = 0 (5.18)

(ii) σ2VbV
b − (λ2 − k)qbqb = 0. There are then four possibilities:

1. qa = 0 for all a with σ = 0 and V bVb 6= 0.

2. Va = 0 for all a with λ2 = k, 2λσ − µδ 6= 0, qbqb 6= 0.

3. σ 6= 0 with

qbVb = −
(2λσ − µδ)

2σ2
qbqb, V bVb =

(λ2 − k)

σ2
qbqb. (5.19)

4. σ = 0 with qbqb = 0 and V bVb = 2(λ2−k)
µδ

V bqb.

One can also consider the case where V bq̃b = qbq̃b = 0. There are then two sub-cases:

1. If qbqb 6= 0 then there exists λ such that Va = λqa for all a. λ is then fixed by

(k + λµδ)qbqb + q̃bq̃b = 0,

2. qa = 0 for all a, and q̃aq̃a = 0. (Note that we cannot have both qa = 0 and Va = 0

for all a, as this would imply Xa = 0 for all a, in contradiction to the constraint

XaXa = 2
3).

– 9 –
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Similarly for the case of k = −1, then equation (5.12) gives two equations

2V bq̃bq̃a + (−2V bqb + µδV bVb)qa − (q̃bq̃b − qbqb)Va = 0

2qbq̃bq̃a + (−q̃bq̃b − qbqb)qa + µδqbqbVa = 0 (5.20)

and similarly there are a number of cases to consider. Again one can consider the case when

q̃a = λqa + σVa . (5.21)

This gives

(

2
(

λ2 − 1
)

V bqb + (µδ + 2σλ) V bVb

)

qa −

(

(

λ2 − 1
)

qbqb − σ2V bVb

)

Va = 0

(

(

λ2 − 1
)

qbqb − σ2V bVb

)

qa +

(

2σ2qbVb + (2λσ + µδ) qbqb

)

Va = 0

(5.22)

and as for the k = 0, 1, we consider two sub-cases.

(i)
(

λ2 − 1
)

qbqb − σ2V bVb 6= 0. Then there exists θ such that qa = θVa for all a, where

θ 6= 0, V aVa 6= 0, θ2(λ2 − 1) − σ2 6= 0

θ2(λ2 − 1) + θ(2λσ + µδ) + σ2 = 0 (5.23)

(ii)
(

λ2 − 1
)

qbqb − σ2V bVb = 0. Then we have four possibilities:

1. qa = 0 for all a with σ = 0 and V bVb 6= 0.

2. Va = 0 for all a with λ2 = 1, 2λσ + µδ 6= 0, qbqb 6= 0.

3. σ 6= 0 with

qbVb = −
(2λσ + µδ)

2σ2
qbqb, V bVb =

(λ2 − 1)

σ2
qbqb . (5.24)

4. σ = 0 with qbqb = 0 and V bVb = −2(λ2−1)
µδ

V bqb.

Also we consider the case when V bq̃b = qbq̃b = 0. Then there are two sub-cases:

1. If qbqb 6= 0 then there exists λ such that Va = λqa for all a. λ is then fixed by

q̃bq̃b + (1 − λµδ) qbqb = 0,

2. qa = 0 for all a, and q̃aq̃a = 0.

It is instructive to see where the non-extremal STU black hole solutions of [2] fit into

this scheme. For the STU model, we take X1 = S, X2 = T , X3 = U with

ηab =

(

0 1

1 0

)

. (5.25)
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The black hole solutions with spherical horizons correspond to setting χ = g, k = 1, δ = 3

with V1 = V2 = V3 = 1
3 and

q̃a = µ sinh βa cosh βa, qa = µ sinh2 βa, a = 2, 3 (5.26)

This solution corresponds to the case (5.19) with where σ 6= 0 and k = 1. Consider the

case for which β2 6= β3, one finds that

q̃a = λqa + σVa (5.27)

for a = 2, 3, with

λ =
sinhβ2 cosh β2 − sinhβ3 cosh β3

sinh2 β2 − sinh2 β3

,

σ = 3µ

(

sinh β2 sinhβ3

sinh2 β2 − sinh2 β3

)

(sinh β2 cosh β3 − sinhβ3 cosh β2) . (5.28)

For k = 0, we have

q̃a = µ sinhβa, qa = µ sinh2βa, (5.29)

In this case it is easy to verify that

q̃a = λqa + σVa (5.30)

for a = 2, 3, with

λ =
1

(sinh β2 + sinh β3)
, σ = 3µ

sinhβ3 sinhβ2

sinh β2 + sinhβ3

. (5.31)

This belongs to the class of solutions satisfying (5.19) with k = 0.

For k = −1, we have

q̃I = −µ sinhβI cosh βI , qI = −µ sinh2βI . (5.32)

Then

q̃a = λqa + σVa (5.33)

for a = 2, 3, with

λ =
sinhβ2 cosh β2 − sinhβ3 cosh β3

sinh2 β2 − sinh2 β3

σ = −

(

3µ sinhβ2 sinh β3

sinh2 β2 − sinh2 β3

)

(sinhβ2 cosh β3 − sinhβ3 cosh β2) . (5.34)

This belongs to the class of solutions satisfying (5.24).
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6 Discussion

We have constructed non-supersymmetric solutions of five dimensional N = 2 supergravity

theories coupled to an arbitrary number of abelian vector multiplets. The solutions con-

structed are deformations of known supersymmetric black hole and string solutions. The

scalar fields have the same solution as in the supersymmetric cases. However, one has to

solve extra conditions involving the various charges and the parameter µ. These conditions

are given for the black holes and black strings, respectively by (3.16) and (4.11). However,

for supergravity models with scalars living on symmetric spaces the condition (3.16) take a

much simpler form given in (5.6) which can also be obtained from (4.11) using the duality

transformation discussed in [10]. We have studied the condition (5.6) for models where the

prepotential factorizes into a linear and a quadratic form and derived various conditions for

the existence of explicit solutions. It is of interest to find more general non-supersymmetric

solutions as deformations of known general supersymmetric ones. Our results can be gen-

eralized to other supergravity models and in particular to those in four dimensions. We

hope to report on this in a future publication.
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